Phosphorylation of RyR2 and shortening of RyR2 cluster spacing in spontaneously hypertensive rat with heart failure.
نویسندگان
چکیده
As a critical step toward understanding the role of abnormal intracellular Ca(2+) release via the ryanodine receptor (RyR(2)) during the development of hypertension-induced cardiac hypertrophy and heart failure, this study examines two questions: 1) At what stage, if ever, in the development of hypertrophy and heart failure is RyR(2) hyperphosphorylated at Ser(2808)? 2) Does the spatial distribution of RyR(2) clusters change in failing hearts? Using a newly developed semiquantitative immunohistochemistry method and Western blotting, we measured phosphorylation of RyR(2) at Ser(2808) in the spontaneously hypertensive rat (SHR) at four distinct disease stages. A major finding is that hyperphosphorylation of RyR(2) at Ser(2808) occurred only at late-stage heart failure in SHR, but not in age-matched controls. Furthermore, the spacing between RyR(2) clusters was shortened in failing hearts, as predicted by quantitative model simulation to increase spontaneous Ca(2+) wave generation and arrhythmias.
منابع مشابه
Role of CaMKIIdelta phosphorylation of the cardiac ryanodine receptor in the force frequency relationship and heart failure.
The force frequency relationship (FFR), first described by Bowditch 139 years ago as the observation that myocardial contractility increases proportionally with increasing heart rate, is an important mediator of enhanced cardiac output during exercise. Individuals with heart failure have defective positive FFR that impairs their cardiac function in response to stress, and the degree of positive...
متن کاملCardiac ryanodine receptor phosphorylation by CaM Kinase II: keeping the balance right.
Phosphorylation of the cardiac ryanodine receptor (RyR2) is a key mechanism regulating sarcoplasmic reticulum (SR) Ca2+ release. Differences in opinion have arisen over the importance assigned to specific phosphorylation sites on RyR2, over the kinase (s) suggested to directly phosphorylate RyR2 and surrounding the possibility that altered phosphorylation of RyR2 is associated with contractile ...
متن کاملCharacterization of a novel PKA phosphorylation site, serine-2030, reveals no PKA hyperphosphorylation of the cardiac ryanodine receptor in canine heart failure.
Hyperphosphorylation of the cardiac Ca2+ release channel (ryanodine receptor, RyR2) by protein kinase A (PKA) at serine-2808 has been proposed to be a key mechanism responsible for cardiac dysfunction in heart failure (HF). However, the sites of PKA phosphorylation in RyR2 and their phosphorylation status in HF are not well defined. Here we used various approaches to investigate the phosphoryla...
متن کاملRyanodine receptor/calcium release channel PKA phosphorylation: a critical mediator of heart failure progression.
Defective regulation of the cardiac ryanodine receptor (RyR2)/calcium release channel, required for excitation-contraction coupling in the heart, has been linked to cardiac arrhythmias and heart failure. For example, diastolic calcium "leak" via RyR2 channels in the sarcoplasmic reticulum has been identified as an important factor contributing to impaired contractility in heart failure and vent...
متن کاملProtein kinase A phosphorylation at serine-2808 of the cardiac Ca2+-release channel (ryanodine receptor) does not dissociate 12.6-kDa FK506-binding protein (FKBP12.6).
Dissociation of FKBP12.6 from the cardiac Ca2+-release channel (RyR2) as a consequence of protein kinase A (PKA) hyperphosphorylation of RyR2 at a single amino acid residue, serine-2808, has been proposed as an important mechanism underlying cardiac dysfunction in heart failure. However, the issue of whether PKA phosphorylation of RyR2 can dissociate FKBP12.6 from RyR2 is controversial. To addi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Heart and circulatory physiology
دوره 293 4 شماره
صفحات -
تاریخ انتشار 2007